
Article

Scope and Mechanism of the Iridium-Catalyzed Cleavage of Alkyl Ethers with Triethylsilane

Jian Yang, Peter S. White, and Maurice Brookhart

J. Am. Chem. Soc., 2008, 130 (51), 17509-17518 • DOI: 10.1021/ja806419h • Publication Date (Web): 20 November 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- · Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 11/20/2008

Scope and Mechanism of the Iridium-Catalyzed Cleavage of Alkyl Ethers with Triethylsilane

Jian Yang, Peter S. White, and Maurice Brookhart*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Received August 13, 2008; E-mail: mbrookhart@unc.edu

Abstract: The cationic iridium pincer complex $[(POCOP)Ir(H)(acetone)]^+[B(C_6F_5)_4]^- \{1, POCOP = 2,6-[OP($ *t* $Bu)_2]_2C_6H_3\}$ was found to be a highly active catalyst for the room-temperature cleavage and reduction of a wide variety of unactivated alkyl ethers including primary, secondary, and tertiary alkyl ethers as well as aryl alkyl ethers by triethylsilane. Mechanistic studies have revealed the full details of the catalytic cycle with the catalyst resting state(s) depending on the basicity of the alkyl ether. During the catalytic reduction of diethyl ether, cationic iridium silane complex, $[(POCOP)Ir(H)(\eta^1-Et_3SiH)]^+[B(C_6F_5)_4]^-$ (3), and Et_2O are in rapid equilibrium with neutral dihydride, $(POCOP)Ir(H)_2$ (5) and diethyl(triethylsilyl)oxonium ion, $[Et_3SiOEt_2]^+[B(C_6F_5)_4]^-$ (7), with 5 + 7 strongly favored. Species 7 has been isolated from the reaction mixture and fully characterized. The turnover-limiting step in this cycle is the reduction of 7 by the neutral dihydride 5. The relative rates of reduction of 7 by dihydride 5 and Et_3SiH were determined to be ~30,000: 1. In the cleavage of the less basic ethers anisole and EtOSiEt_3, the cationic iridium silane complex, 3, was found to be the catalyst resting state. The hydride reduction of the intermediate oxonium ion $EtO(SiEt_3)_2^+$, 9, occurs via attack by Et_3SiH . In the case of anisole, the intermediate PhMeOSiEt_3^+, 10, is reduced by 5 and/or Et_3SiH .

1. Introduction

Heterolytic activation of H_2^{-1} by several classes of organometallic systems has resulted in catalysts which can perform ionic hydrogenations of aldehydes and ketones.² The basic catalytic mechanism, termed ionic hydrogenation, involves transfer of H^+ and H^- equivalents from the catalyst to the carbonyl group to generate the product alcohol followed by reaction of H_2 with the metal complex to regenerate the active catalyst and close the cycle.² Similar chemistry has been reported for reduction of iminium ions to amines.³ Stephan has recently described phosphinoboranes (termed "frustrated" Lewis pairs, FLPs) which heterolytically activate hydrogen to produce phosphonium borate species which perform ionic hydrogenation of imines.⁴

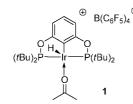
Related hydrosilation chemistry has been reported.^{5,6} Mechanistic studies by Piers^{5b} have shown that hydrosilation of carbonyl functionalities catalyzed by $(C_6F_5)_3B^{5a}$ proceeds by activation of the *silane* by $(C_6F_5)_3B$ and transfer of R_3Si^+ to oxygen to produce $R_2C=OSiR_3^+$ and $H(C_6F_5)_3B^-$. The catalytic cycle is closed by hydride reduction of $R_2C=OSiR_3^+$. Hydrosi-

lation of imines,^{5d} enones, and silyl enol ethers^{5e} and olefins^{5f} is reported to occur by a similar mechanism.

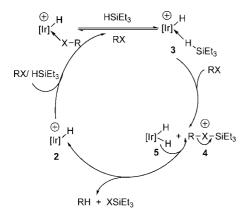
The reduction of C–O single bonds⁷ has also been achieved catalytically using the $(C_6F_5)_3$ B/silane system. Gevorgyan and Yamamoto reported that using Et₃SiH as reductant certain alcohols could be converted to alkanes via initial formation and reduction of triethylsilyl alkyl ethers.⁸ Furthermore, alkyl ethers could be reduced to silyl alkyl ethers. Extending this work, McRae demonstrated reduction of ketones and aldehydes as well as primary, secondary, and tertiary alcohols to alkanes using either diethylsilane or butylsilane in combination with $(C_6F_5)_3$ B.⁹ Mechanistic studies of the reduction of alkyl silyl ethers by Ph₂MeSiH/(C₆F₅)₃B have been reported.¹⁰

(6) (a) Du, G.; Fanwick, P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 129, 5180. (b) Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530.

 ⁽a) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer Academic/Plenum Publishers: New York, 2001. (b) Kubas, G. J. Adv. Inorg. Chem. 2004, 56, 127. (c) Kubas, G. J. Chem. Rev. 2007, 107, 4152.


^{(2) (}a) Bullock, R. M. Chem. Eur. J. 2004, 10, 2366. (b) Bullock, R. M. In Handbook of Homogeneous Hydrogenation de Vries, J. G., Elsevier, C. J., Eds.; Wiley-VCH: Weinheim, 2007; Chapter 7.

^{(3) (}a) Guan, H.; Iimura, M.; Magee, M. P.; Norton, J. R.; Zhu, G. J. Am. Chem. Soc. 2005, 127, 7805. (b) Magee, M. P.; Norton, J. R. J. Am. Chem. Soc. 2001, 123, 1778. (c) Guan, H.; Saddoughi, S. A.; Shaw, A. P.; Norton, J. R. Organometallics 2005, 24, 6358. (d) Guan, H.; Iimura, M.; Magee, M. P.; Norton, J. R.; Janak, K. E. Organometallics 2003, 22, 4084.


^{(4) (}a) Stephan, D. W. Org. Biomol. Chem. 2008, 6, 1535. (b) Kenward, A. L.; Piers, W. E. Angew. Chem., Int. Ed. 2008, 47, 38. (c) Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880. (d) Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Frohlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 5072. (e) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 49, 8050. (f) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701. (g) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407. (h) Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.

^{(5) (}a) Piers, W. E. Adv. Organomet. Chem. 2005, 52, 1. (b) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090. (c) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440. (d) Blackwell, J. M.; Sonmor, E. R.; Scocitti, T.; Piers, W. E. Org. Lett. 2000, 2, 3921. (e) Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 58, 8247. (f) Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936.

Chart 1. Cationic Iridium Pincer Catalyst 1

Scheme 1. Proposed Catalytic Cycle for Iridium-Catalyzed Reduction of Alkyl Halides by Triethylsilane¹¹

We have discovered that the highly active cationic iridium pincer complex 1 (Chart 1) catalyzes the reduction by triethylsilane of primary, secondary, and tertiary chlorides, bromides, and iodides as well as certain fluorides.¹¹ In-depth mechanistic studies have been carried out which have revealed a unique catalytic cycle (Scheme 1). The electrophilic iridium hydride complex 2 binds and activates the silane to form 3. This complex transfers Et_3Si^+ to the halide, forming a bridged halonium ion 4 which is rapidly reduced by the iridium dihydride 5 which remains following the silyl transfer. This step regenerates the

(11) Yang, J.; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 12656.

cationic iridium hydride complex and closes the catalytic cycle. The key Ir(silane) intermediate **3** has been isolated and fully characterized by NMR spectroscopy and X-ray crystallography, which shows it to be an unprecedented cationic transition metal η^1 -silane complex.¹²

In considering application of this chemistry to other organic functional groups, we have been particularly drawn to the cleavage and reduction of alkyl ethers due to the potential synthetic applications of this reaction. Herein we report the use of cationic iridium pincer catalysts for the room-temperature cleavage and reduction of a broad range of alkyl ethers with triethylsilane, as well as mechanistic details of these novel catalytic transformations including identification of catalyst resting states and *isolation* and spectroscopic and structural characterization of a key intermediate, the diethyl(triethylsilyl)oxonium ion, in the reduction of diethyl ether.

2. Results and Discussion

2.1. Cleavage of Alkyl Ethers with Et₃SiH Catalyzed by Iridium Complex 1. Alkyl ethers are readily cleaved with Et_3SiH in the presence of 1 mol % of iridium complex 1 at room temperature to yield alkyl triethylsilyl ethers and alkane (eq 1). In some cases cleavage of the silyl ether can be achieved to yield hexaethyldisiloxane and a second equivalent of alkane (eq 2).

$$R^{1}OR^{2} + Et_{3}SiH \xrightarrow{1\% 1} R^{1}OSiEt_{3} + R^{2}H \quad (1)$$
1.0 equiv. 2.2 equiv.
$$R^{1}OSiEt_{3} + Et_{3}SiH \xrightarrow{1\% 1} Et_{3}SiOSiEt_{3} + R^{1}H \quad (2)$$

Dichlorobenzene is generally used as solvent; however, reactions in chlorobenzene, fluorobenzene, or neat alkyl ether¹³ also proved successful. Results of typical reactions are illustrated in Table 1. Conversions are determined by NMR spectroscopy.

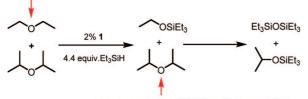
Entry 1 shows that rapid cleavage of diethyl ether and formation of ethane and ethoxytriethylsilane (first cleavage) is accomplished in 3 h at 23 °C with 1% catalyst loading, while \sim 23 h is required for reduction of the formed ethoxytriethylsilane to a second equivalent of ethane and hexaethyldisiloxane (second cleavage). Under similar conditions cleavage of secondary alkyl ethers is slow. For example, as shown in entry 2, diisopropyl ether requires \sim 44 h for 95% conversion to propane and isopropyl triethylsilyl ether and resists further reduction to hexaethyldisiloxane (2nd cleavage). Even at longer reaction times (8 days) or elevated reaction temperatures (65 °C, 5 h) only negligible amounts of hexaethyldisiloxane were observed. Similarly, efficient cleavage of alkyl aryl ethers to aryl silyl ethers can be achieved readily. Thus, anisole can be cleaved in 3 h with 1% 1 at 23 °C (entry 3). At 0.1% loading, complete cleavage of anisole is accomplished in 18.5 h at 65 °C (entry 4). Cleavage reactions can also be carried out in neat anisole and 400 TOs can be readily achieved at 23 °C (entry 5). The bulkier alkyl aryl ether, 2,6-dimethylanisole, is also cleaved efficiently at 23 °C with a slight excess of Et₃SiH (1.1 equiv)

⁽⁷⁾ It is known that hydrosilanes are able to reduce alkyl ethers in the presence of stoichiometric (or excess) amounts of Lewis acids: (a) Adlington, M. G.; Orfanopoulos, M.; Fry, J. L. *Tetrahedron Lett.* **1976**, 2955. (b) Fry, J. L.; Orfanopoulos, M.; Adlington, M. G.; Dittman, W. R.; Silverman, S. B. *J. Org. Chem.* **1978**, *43*, 374. (c) Orfanopoulos, M.; Smonou, I. *Synth. Commun.* **1988**, *18*, 833. (d) Larsen, J. W.; Chang, L. W. *J. Org. Chem.* **1979**, *44*, 1168. (e) Yato, M.; Ishida, A. *Heterocycles* **1995**, *41*, 17. (f) Smonou, I. *Synth. Commun.* **1984**, *14*, 24, 1999. A catalytic system using 5% InCl₃ in combination with Ph₂SiHCl shows high selectivities for reduction of benzyl, secondary, and tertiary alcohols to alkanes but not for reduction of primary alcohol: (g) Yasuda, M.; Onishi, Y.; Ueba, M.; Miyai, T.; Baba, A. *J. Org. Chem.* **2001**, *66*, 7741. Bi(OTf)₃-catalyzed reduction of *p*-methoxybenzylic alcohols with Et₃SiH: (h) Rubenbauer, P.; Bach, T. *Tetrahedron Lett.* **2008**, *49*, 1305.

^{(8) (}a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179. (b) Gevorgyan, V.; Liu, J.-X.; Rubin, M.; Benson, S.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 8919. Also see: (c) Blackwell, J. M.; Foster, K. L.; Beck, V. H.; Piers, W. E. J. Org. Chem. 1999, 64, 4887. High loadings of Pd(II) salts have been shown to induce Et₃SiH reduction of certain classes of primary and secondary alcohols: (d) Ferreri, C.; Costantino, C.; Chatgilialoglu, C.; Boukherroub, R.; Manuel, G. J. Organomet. Chem. 1998, 554, 135.

^{(9) (}a) Nimmagadda, R. D.; McRae, C. *Tetrahedron Lett.* **2006**, 47, 5755. For B(C₆F₅)₃-catalyzed reductions of carbonyl functions to the corresponding alkyl functions with Et₃SiH: (b) Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. *J. Org. Chem.* **2001**, 66, 1672. (c) Bajracharya, G. B.; Nogami, T.; Jin, T.; Matsuda, K.; Gevorgyan, V.; Yamamoto, Y. *Synthesis* **2004**, 308. With polymethylhydrosiloxane as reductant: (d) Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. *J. Org. Chem.* **2002**, 67, 9080.

⁽¹⁰⁾ Chojnowski, J.; Rubinsztajn, S.; Cella, J. A.; Fortuniak, W.; Cypryk, M.; Kurjata, J.; Kazmierski, K. Organometallics 2005, 24, 6077.


⁽¹²⁾ Yang, J.; White, P. S.; Schauer, C. K.; Brookhart, M. Angew. Chem., Int. Ed. 2008, 47, 4141.

⁽¹³⁾ Active catalyst species were not very soluble in neat diethyl ether and triethylsilane; therefore, the solvent-free reduction of diethyl ether was carried out at an elevated reaction temperature (65 °C); see Experimental Section for details.

Table 1. Cleavage of Alkyl Ethers with Et ₃ SiH Catalyzed by 1 ^a 1 mol% 1						
$R^{1}OR^{2} + Et_{3}SiH \xrightarrow{23 \circ C} R^{1}OSiEt_{3} + R^{2}H$						
1.0 equiv. 2.2 equiv.						
entry	cat. [mol %]	ether	time (h)	conversion ^{f} (%)	product	
1	1.0	diethyl ether	3	>99	EtOSiEt ₃	
		second cleavage	23	98	Et ₃ SiOSiEt ₃	
2	1.0	diisopropyl ether	43.5	95	i-PrOSiEt3	
3	1.0	anisole	3	>99	PhOSiEt ₃	
4^{b}	0.1	anisole	18.5	>99	PhOSiEt ₃	
5^c	0.25	anisole	23.2	>99	PhOSiEt ₃	
6^d	0.5	2,6-dimethylanisole	10	>99	ArOSiEt ₃	
7^e	1.0	benzyl methyl ether	0.3	>99	MeOSiEt3g	
		second cleavage	5.5	>99	Et ₃ SiOSiEt ₃	
8^e	1.0	tert-butyl methyl ether	8	>99	Et ₃ SiOSiEt ₃ ^h	
9	1.0	<i>n</i> -butyl methyl ether	0.3	>99	n-BuOSiEt3	
		second cleavage	69	92	Et ₃ SiOSiEt ₃	

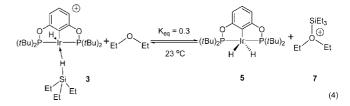
^{*a*} General reaction conditions: 1 mol % of **1**, 2.2 equiv of Et₃SiH, C₆D₄Cl₂, 23 °C. ^{*b*} Reaction was carried out at 65 °C. ^{*c*} In neat anisole. ^{*d*} 1.1 equiv of Et₃SiH was used. ^{*e*} 6 equiv of Et₃SiH was used. ^{*f*} Determined by loss of reactant ethers by ¹H NMR spectroscopy. ^{*g*} In addition to toluene, some alkylation products were observed. ^{*h*} In addition to isobutane, isobutene and H₂ were observed.

Scheme 2. Competition Experiments to Determine Relative Reactivities of Et_2O and $/Pr_2O$ with $1/Et_3SiH$ System

(relative reactivities of EtOSiEt₃: iPr₂O = ca. 1: 3.5)

and 0.5% loading of 1 (entry 6). In the case of aromatic ethers no $C(sp^2)$ -O cleavage is ever observed.

Results of the cleavage of mixed alkyl ethers ($R^{1}OR^{2}$) are shown in entries 7–9. Benzyl methyl ether is cleaved to methyl triethylsilyl ether (first cleavage) in less than 20 min with 1% catalyst loading and the formed methyl triethylsilyl ether is further reduced to methane and hexaethyldisiloxane (second cleavage) within another 5.5 h. Similarly, *tert*-butyl methyl ether is rapidly cleaved to methyl triethylsilyl ether and a mixture of isobutene, H₂, and isobutane. At longer reaction times, methyl triethylsilyl ether is further reduced to methane and hexaethyldisiloxane, while isobutene is hydrogenated to isobutane. The methyl group of *n*-butyl methyl ether is selectively (>95%) and rapidly cleaved to yield *n*-butyl triethylsilyl ether and methane. At longer reaction times, the formed *n*-butyl triethylsilyl ether can be further reduced to *n*-butane and hexaethyldisiloxane.


In a competition experiment, a mixture of diethyl ether (1 equiv) and diisopropyl ether (1 equiv) was treated with Et₃SiH (4.4 equiv) and 2% **1** (Scheme 2). Rapid, selective (>90%) cleavage of diethyl ether resulted in formation of a mixture of ethoxytriethylsilane and unreacted diisopropyl ether. At longer reaction times, reduction of diisopropyl ether occurs faster than reduction of ethoxytriethylsilane. These results indicate that highly chemoselective cleavage of alkyl ethers can be achieved with the **1**/Et₃SiH system.

This C–O cleavage chemistry has also been applied to catalytic fragmentation of poly(ethylene glycol) by triethylsilane. Thus, in the presence of a catalytic amount of **1**, poly(ethylene glycol) was readily degraded to $Et_3SiOCH_2CH_2OSiEt_3$ and ethane at 65 °C (Scheme 3) (some H₂ is also likely generated from the terminal OH group).

2.2. In Situ ³¹P and ¹H NMR Spectroscopic Monitoring of the Working Catalyst System for Et₂O Reduction: Identification of the Catalytic Resting State and Key Intermediates. To identify catalyst resting state(s) and key intermediates for this catalytic process, the cleavage of diethyl ether was performed under standard catalytic conditions and monitored by ¹H, ${}^{13}C{}^{1}H$, and ${}^{31}P{}^{1}H$ NMR spectroscopy. From earlier studies 11 we know that complex 1 is rapidly converted to the cationic monohydride complex, 2, which binds triethylsilane to form 3. Following the in situ cleavage of Et₂O at 23 °C with 1 mol % catalyst loading (eq 3), the only iridium species observable initially are the *neutral* iridium dihydride complex,¹⁴ 5 (~80%), and the neutral silvl hydride complex (POCOP)Ir(H)(SiEt₃)¹¹ $\{POCOP = 2, 6 - [OP(tBu)_2]_2 C_6 H_3\}, 6 (\sim 20\%).$ (This complex is formed by reaction of 5 with triethylsilane, see below.) As the reduction proceeds, Et₂O, 5, and 6 decrease in concentration, while the cationic iridium silane complex, 3, appears and grows in concentration equivalent to the loss of 5 and 6.

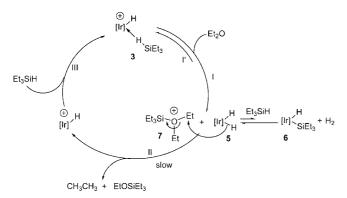
Et₂O + Et₃SiH $1 \mod 1$ EtOSiEt₃ + CH₃CH₃ (3) 1.0 equiv. 2.2 equiv. (3)

This observation suggests that the iridium silane complex **3** is in equilibrium with the iridium dihydride **5** and diethyl(triethylsilyl)oxonium ion **7** as shown in eq 4 and that this equilibrium is established rapidly relative to the rate of reduction. Once the concentration of **3** is sufficient to be measured relative to **5** and Et₂O, the equilibrium constant can be determined by ¹H and ³¹P{¹H} NMR spectroscopy. At several stages of conversion K_{eq} was determined to be 0.3, consistent with the proposition that equilibrium is maintained between **3** and **5** throughout the catalytic reduction.

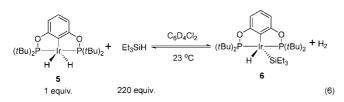
Species 7 cannot be spectroscopically observed at 23 °C. Significant line broadening of the ethyl groups of diethyl ether is observed in both the ¹H and ¹³C NMR spectra which we propose indicates rapid dynamic exchange between 7 and Et₂O (eq 5a). Observations by Kira, Sakurai, and co-workers^{15a} support this hypothesis. They showed that in situ generation of $[Et_2OSiMe_3]^+[B(Ar_F)_4]^-$ [Ar_F = 3,5-(CF₃)₂C₆H₃] in the presence of excess Et₂O at -70 °C resulted in a dynamic system described by eq 5b as shown by line broadening in the ¹H and ¹³C NMR spectrum.^{15a}

$$\begin{array}{c} Et \underbrace{\oplus}_{C} - SiEt_3 + O \underbrace{Et}_{Et} \underbrace{C_6 D_4 Cl_2}_{23 \circ C} & Et \underbrace{O}_{Et} + Et_3 Si - O \underbrace{Et}_{Et} \end{array}$$

$$\begin{array}{c} Ft \underbrace{\oplus}_{C} - SiMe_3 + O \underbrace{Et}_{Et} \underbrace{CD_2 Cl_2}_{-70 \text{ to } -30 \circ C} & Et \underbrace{Et}_{T} O + Me_3 Si - O \underbrace{Et}_{Et} \end{array}$$


$$\begin{array}{c} Ft \underbrace{\oplus}_{C} - SiMe_3 + O \underbrace{Et}_{Et} \underbrace{CD_2 Cl_2}_{-70 \text{ to } -30 \circ C} & Et \underbrace{Et}_{T} O + Me_3 Si - O \underbrace{Et}_{Et} \end{array}$$

$$\begin{array}{c} Ft \underbrace{\oplus}_{C} - SiMe_3 + O \underbrace{Et}_{Et} \underbrace{CD_2 Cl_2}_{-70 \text{ to } -30 \circ C} & Et \underbrace{Et}_{T} O + Me_3 Si - O \underbrace{Et}_{T} \end{array}$$


$$\begin{array}{c} Ft \underbrace{\oplus}_{C} - SiMe_3 + O \underbrace{Et}_{T} \underbrace{Bt}_{T} O + Me_3 Si - O \underbrace{Bt}_{T} O \end{array}$$

As noted above, a small quantity ($\sim 20\%$ by ³¹P{¹H} NMR spectroscopy) of an iridium species assigned as the silvl hydride **6** was observed in the working catalytic system. This complex was independently generated by treatment of (POCOP)Ir(H)(Cl) with NaOtBu in presence of excess Et₃SiH in C₆D₅CD₃ and Scheme 3. Fragmentation of Poly(ethylene glycol) with $1/Et_3SiH$ System

 $\ensuremath{\textit{Scheme 4.}}$ Proposed Catalytic Cycle for Cleavage of Et_2O with 1/Et_3SiH

characterized by NMR spectroscopy.¹¹ It can also be generated by treatment of dihydride **5** with a very large excess of Et₃SiH in C₆D₄Cl₂ in the absence of diethyl ether (eq 6). The K_{eq} is not available due to the difficulty of accurately measuring the concentration of H₂ in C₆D₄Cl₂ solution.

In the working catalyst system for diethyl ether cleavage (eq 3), the ratio of **6** to **5** increases with an increase of the initial Et_3SiH :Ir ratio. Thus, it is instructive to note that increasing the Et_3SiH concentration while holding the loading of **1** at 1 mol % (relative to Et_2O) results in a *decrease* in the rate of the first cleavage. This suggests that dihydride **5** is a much more effective hydride donor for reducing **7** than silyl hydride, **6**.

The above results support the proposed catalytic cycle shown in Scheme 4. At high Et₂O concentrations in the initial stages of catalysis equilibrium between $3 + \text{Et}_2\text{O}$ and 5 + 7 strongly favors 5 + 7. The dihydride, **5**, reacts with silane to generate small quantities of silyl hydride, **6**. The dihydride reduces **7** to yield product EtOSiEt₃ and cationic monohydride **2**, which, upon reaction with silane, forms **3** and closes the catalytic cycle. The silyl hydride does not effectively compete with dihydride as a hydride donor. As catalysis proceeds and ether is depleted, the concentration of the silane complex, **3**, increases and becomes observable by NMR spectroscopy. The turnover-limiting step in the cycle is reduction of Et₃SiOEt₂⁺ by the neutral dihydride complex. Two additional experiments were carried out to confirm this catalytic cycle as described in sections 2.2.1. and 2.2.2. below.

2.2.1. Effect of Adding Additional Iridium Dihydride, 5. If the turnover-limiting step is reaction of dihydride, **5**, with the oxonium species, **7**, (and dihydride, **5**, is the catalyst resting state), then addition of **5** to the reaction should result in a proportionate increase in turnover frequency. Addition of 1.0 mol % of iridium dihydride **5** to the catalytic system initiated with 1% Ir (eq 7) was found to increase the initial turnover

frequency by a factor of 1.8 as can be seen from the data shown in Figure 1. The value of 1.8 is within experimental error of the expected factor of 2.0 and in fact matches the NMR measured increase in the concentration of **5** relative to that of **7**. These results further support the mechanistic proposal in Scheme 4.

2.2.2. Generation, Spectroscopic and Structural Characterization, and Dynamic Behavior of Diethyl(triethylsilyl)oxonium ion (7) and Its Reaction with Dihydride (5). The proposed catalytic intermediate diethyl(triethylsilyl)oxonium ion, $Et_3SiOEt_2^+$, 7, can be independently generated using Lambert methodology^{16,5b} by treating the in situ formed C₆D₆-stabilized triethylsilyl cation $[Et_3Si(C_6D_6)]^+[B(C_6F_5)_4]^-$ with diethyl ether in C_6D_5Cl at -40 °C. The ¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra confirm clean formation of cation 7. The ¹H spectrum shows triethylsilyl group resonances at δ 0.58 (CH₃) and 0.30 (CH₂), and the methyl and methylene protons adjacent to the oxygen at δ 0.82 and 3.53, respectively. The ¹³C{¹H} shows, in addition to the $B(C_6F_5)_4^-$ counteranion and excess free Et₂O (δ 66.2 and 15.8) and traces of excess Et₃SiH, only four signals corresponding to the methyl and methylene carbons of the EtOgroup at δ 75.1 and 12.8, and the triethylsilyl group at δ 3.1 and 5.5. Slight line broadening of the ethyl groups of 7 is seen in the ¹H and ¹³C{¹H} NMR spectrum, which indicates rapid dynamic exchange with free Et₂O even at -40 °C. The ²⁹Si{¹H} resonance of 7 appeared as a singlet at δ 68.9. This is downfield compared to free Et₃SiH (δ 0.2) and the iridium η^1 -Et₃SiH complex 3 (δ 30.2),¹² but still upfield of that for the C₆D₆stabilized triethylsilyl cation $[Et_3Si(C_6D_6)]^+$ (δ 92.3).¹⁶

Upon warming, the ¹H and ¹³C resonances corresponding to 7 and free Et₂O broaden and coalesce. At 20 °C the ¹H NMR spectrum shows broad bands at δ 3.4 and 1.0, respectively, for the methylene and methyl protons of the $-OCH_2CH_3$ group. The methyl and methylene ¹³C signals of the EtO- group, however, are too broad to be observed in the ¹³C{¹H} NMR spectrum due to exchange.

An X-ray-quality crystal^{17a} of 7 was obtained by slow diffusion of pentane into a C_6D_5Cl solution of 7 at -35 °C under Ar. Complex 7 can also be isolated by crystallization from the *catalytic reaction mixture* at -35 °C, which further indicates

⁽¹⁴⁾ Goettker-Schnetmann, I.; White, P.; Brookhart, M. Organometallics **2004**, *23*, 1766.

^{(15) (}a) Kira, M.; Hino, T.; Sakurai, H. J. Am. Chem. Soc. 1992, 114, 6697.
(b) Scharrer, E.; Chang, S.; Brookhart, M. Organometallics 1995, 14, 5686.

^{(16) (}a) Lambert, J. B.; Zhao, Y.; Wu, H. J. Org. Chem. 1999, 64, 2729.
(b) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430. (c) Lambert, J. B.; Kania, L.; Zhang, S. Chem. Rev. 1995, 95, 1191. (d) Reed, C. A. Acc. Chem. Res. 1998, 31, 325. (e) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917. (f) Corey, J. Y. J. Am. Chem. Soc. 1975, 97, 3237. (g) Müller, T. Adv. Organomet. Chem. 2005, 53, 155.

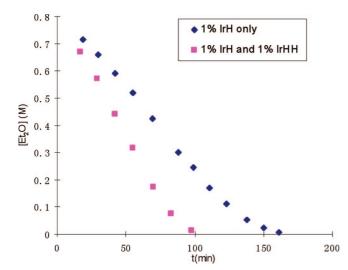
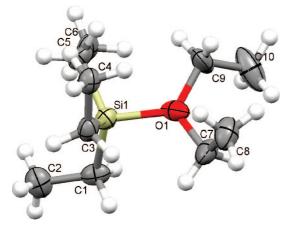



Figure 1. Plot of Et_2O concentration vs time for the cleavage of Et_2O with and without adding additional 5.

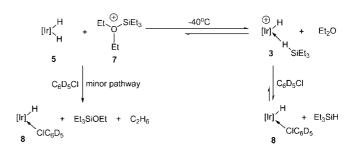


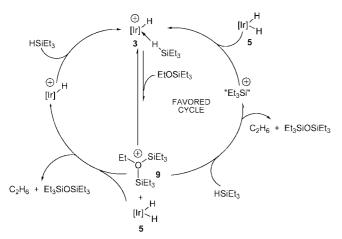
Figure 2. ORTEP diagram of the cation in 7. Key bond distances (Å) and bond angles (deg): Si(1)-O(1) = 1.788(3), Si(1)-C(1) = 1.855(4), Si(1)-C(3) = 1.859(4), Si(1)-C(5) = 1.862(4), O(1)-C(7) = 1.507(5), O(1)-C(9) = 1.494(5), C(1)-C(2) = 1.537(6), C(3)-C(4) = 1.549(6), C(5)-C(6) = 1.532(7), C(7)-C(8) = 1.487(6), C(9)-C(10) = 1.478(7), O(1)-Si(1)-C(1) = 103.61(16), O(1)-Si(1)-C(3) = 105.09(16), O(1)-Si(1)-C(5) = 105.15(16), C(1)-Si(1)-C(3) = 115.56(17), C(1)-Si(1)-C(5) = 112.62(17), C(3)-Si(1)-C(5) = 113.39(17), C(7)-O(1)-C(9) = 115.0(3), C(7)-O(1)-Si(1) = 118.4(2), C(9)-O(1)-Si(1) = 124.5(2).

its intermediacy as a resting state in the working catalyst system. The ORTEP diagram of 7 is shown in Figure 2.

Addition of iridium dihydride **5** in C₆D₅Cl solution at -40 °C to in situ generated diethyl(triethylsilyl)oxonium ion **7** at -40 °C, *initially* results in formation of free Et₃SiH and cationic iridium chlorobenzene- d_5 complex **8** with little formation of cleavage products EtOSiEt₃ and C₂H₆ (Scheme 5). This result is consistent with the mechanistic proposal shown in Scheme 4 in which there is a rapid pre-equilibrium between **5** and **3** prior to product formation. If nucleophilic attack of **5** on **7** to yield EtOSiEt₃ is turnover-limiting, then reaction of **5** with **7** should *initially* yield predominantly **3** and Et₂O as observed. (Under these conditions with only one equivalent of silane present per Ir center, we have previously established that silane will be displaced from **3** by solvent to yield the chlorobenzene adduct, **8**.)

2.3. Mechanistic Analysis of the Reduction of EtOSiEt₃. A very different mechanistic profile was observed in the second step of the cleavage of diethyl ether, conversion of EtOSiEt₃ to


Scheme 5. Reaction of 7 with 5 at -40 °C


Et₃SiOSiEt₃ and ethane (eq 2). After complete conversion of Et_2O to $EtOSiEt_3$, the dihydride complex 5 vanishes and is replaced by the cationic iridium silane complex, 3, as the catalyst resting state. The less basic and more hindered EtOSiEt₃ (relative to Et_2O) must result in disfavoring Et_3Si^+ transfer from 3 to EtOSiEt₃ to form the (high-energy) oxonium species EtO- $(SiEt_3)_2^+$, 9. Under standard conditions where 120 equiv of Et₃SiH is used relative to iridium complex, the half-life of conversion of EtOSiEt₃ to Et₃SiOSiEt₃ is ~ 10 h. Interestingly, when the same reaction is carried out with addition of 1 equiv of dihydride 5 relative to 1, the reduction of $EtOSiEt_3$ is dramatically *retarded*, with the half-life now being ~ 100 h (\sim 94% conversion after 353 h). (Recall in the case of the reduction of Et₂O where the dihydride was the resting state and the oxonium species Et₂OSiEt₃⁺, 7, prevailed, addition of dihydride 5 accelerated the reduction.) The equilibrium 3 +EtOSiEt₃ \Rightarrow 5 + 9 is driven to the left by addition of 5; however, if 5 were the sole hydride donor to 9, then the shift in equilibrium would be balanced by increase in [5], and no effect on the rate of reduction of EtOSiEt₃ should be observed. This result implies that Et₃SiH is the major if not the sole hydride donor to $EtO(SiEt_3)_2^+$, 9. In support of this contention, the rate of cleavage of EtOSiEt₃ is accelerated as the concentration of Et₃SiH is increased. For example, using 300 vs 120 equiv of Et₃SiH results in a \sim 3-fold rate increase in turnover frequency.¹⁸

The fact that Et_3SiH (not dihydride **5**) is the sole or at least major hydride donor is likely a result of two factors. First, since the cationic silane complex **3** is the resting state, the concentration of **5** is quite low relative to Et_3SiH . Second, the pincer dihydride **5** is certainly a more hindered hydride donor than Et_3SiH and $EtO(SiEt_3)_2^+$ is a more hindered substrate than $Et_2OSiEt_3^+$, so steric factors favor reduction of $EtO(SiEt_3)_2^+$ by Et_3SiH . The overall catalytic process for reduction of $EtOSiEt_3$ is summarized in Scheme 6 with the right side of the cycle the sole or at least major pathway for reduction.

2.4. Mechanistic Investigation of the Catalytic Cleavage of PhOCH₃ with Et₃SiH. Following the in situ NMR monitoring and mechanistic analysis of the diethyl ether cleavage reactions, we turned to investigate a much less basic alkyl aryl ether, anisole. The catalytic cleavage reaction with PhOCH₃ was also monitored by both ¹H and ³¹P{¹H} NMR spectroscopy. The only Ir species present throughout the entire catalytic reaction is the cationic iridium silane complex, **3**. This could be due to (1) the low basicity of anisole, which results in very low equilibrium

⁽¹⁷⁾ The crystal structure of the trimethyl silyl analogue of 7, [Me₃SiOEt₂]⁺-[B(C₆F₅)₄]⁻, has been reported as reaction byproduct in the synthesis of E(SiMe₃)₄⁺ ions (E = P, As) and also by independent synthesis: (a) Driess, M.; Barmeyer, R.; Monsé, C.; Merz, K. *Angew. Chem., Int. Ed.* 2001, 40, 2308. (b) Crystal structure of tBu₃SiOH₂⁺ ion: Xie, Z.; Bau, R.; Reed, C. A. *Chem. Commun.* 1994, 2519. (c) Olah, G. A.; Li, X.-Y.; Wang, Q.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 1995, 117, 8962.

concentrations (beyond NMR detection limit) of neutral iridium dihydride, **5**, and methylphenyl(triethylsilyl)oxonium ion, **10** (Scheme 7A), or (2) the result of slow transfer of Et_3Si^+ from **3** to anisole followed by fast reaction of **5** with oxonium species **10** (Scheme 7B). However, in either of these two cases, no dependence of the turnover frequency on the concentration of **5** would be expected.

Thus, addition of 0.5 mol % to 1.5 mol % iridium dihydride **5** to the catalytic reaction mixture (eq 8) was found to have no effect on the reaction rate (Figure 3).

		C ₆ D ₄ Cl ₂ , 23 °C	_	PLOCIE		<u></u>	(8)
PhOMe		[ir]H ⁺ (1) + [ir]HH (5)	-	PhOSiEt ₃	+	Сп ₄	(0)
1.0 equiv.	2.2 equiv.	1.0 % 0.5 % 1.0 % 1.0 % 1.0 % 1.5 %					

Varying the Et₃SiH concentration under these reaction conditions as shown in eq 9 (1% 1 + 1% 5) shows the turnover frequency is zero-order in the concentration of Et₃SiH (Figure 4) and implies that Et₃SiH does not compete with dihydride 5 as the hydride donor.

PhOMe	+		1% [Ir]H ⁺ (1) + 1% [Ir]HH (5)	➤ PhOSiEt ₃	+	сц	(0)
FIOME	т	El3OIT	C ₆ D₄Cl ₂ , 23 °C	FILOSIEI3	Ŧ		(3)
1.0 equiv.		1.0 equiv. 1.5 equiv. 2.0 equiv.	0604012, 25 0				

Under conditions where no additional iridium dihydride **5** is added, the concentration of **5** and PhMeOSiEt₃⁺ **10** are quite low since **3** is the resting state. Triethylsilane is present in much higher concentration than **5** and thus may compete with **5** for the reduction of **10**. Indeed, we observe an increase in the turnover frequency of reduction with increased silane concentrations (e.g., 220 to 600 equiv), but due to the formation of varying small amounts of silyl hydride, **6**, quantitative kinetic analysis is not possible. Nevertheless, these results suggest Et₃SiH can compete with **5** as the hydride donor under these conditions.

2.5. Comparison of (POCOP)IrH⁺/Et₃SiH with [Ph₃C][B(C₆F₅)₄]/ Et₃SiH for AlkylEther Cleavage. The combination of [Ph₃C][B(C₆F₅)₄]/ Et₃SiH was reported by Lambert^{16a} for catalytic hydrosilation of diphenylethene and has also been demonstrated recently by Ozerov¹⁹ to be capable of catalytic hydrodefluorination of $C(sp^3)$ -F bonds presumably via a mechanism involving a carbenium ion intermediate. To gain further mechanistic insight into the system, we have examined the capability of the [Ph₃C][B(C₆F₅)₄]/Et₃SiH system for alkyl ether cleavage reactions and compared it with the 1/Et₃SiH system (eq 10). In the catalytic cleavage of anisole, as shown in Figure 5, iridium complex 1 is less reactive than [Ph₃C][B(C₆F₅)₄] ($t_{1/2}$ (23 °C) = 80 min for 1; $t_{1/2}$ (23 °C) = 10 min for [Ph₃C][B(C₆F₅)₄]). However, for catalytic reactions with the more basic alkyl ether Et₂O (Figure 6), iridium complex 1 is much more reactive than the [Ph₃C][B(C₆F₅)₄]/Et₃SiH system under same reaction conditions ($t_{1/2}$ (23 °C) = 80 min for 1; $t_{1/2}$ (23 °C) = 120 h for [Ph₃C][B(C₆F₅)₄]).

R ¹ 0R ² +		C ₆ D ₄ Cl ₂ , 23 °C	► R ¹ OSiEt ₃	± ¤²⊔	(10)
R OR T	EGOIL	,		1 1 1 1	(10)
1.0 equiv.	2.2 equiv.	1% catalyst			
catalyst a: [Ph ₃ C][B(C ₆ F ₅) ₄]					
		catalyst b: complex 1			

When the catalytic cleavage of Et_2O with $[Ph_3C][B(C_6F_5)_4]$ was followed by ¹H and ¹³C NMR spectroscopy, similar to the iridium catalytic system, line broadening of the ethyl groups of diethyl ether was observed in both ¹H and ¹³C NMR spectra. This indicates that $Et_3SiOEt_2^+$, 7, is the resting state in the Et_2O cleavage reaction catalyzed by $[Ph_3C][B(C_6F_5)_4]$ (Scheme 8). Indeed 7 can be isolated from this catalytic reaction mixture as well. Although lower in concentration ([5]/[Et₃SiH] = 1/250in Et₂O reduction), iridium dihydride 5 is more nucleophilic than Et₃SiH and potentially a much better hydride donor; therefore, the turnover-limiting hydride transfer step is much faster for iridium catalysis compared with $[Ph_3C][B(C_6F_5)_4]$ catalysis in diethyl ether cleavage. Relative rates of hydride reduction of 7 by 5 versus Et₃SiH can be estimated as \sim 30,000:1 from the ratio of initial reduction rates $(V_i(Ir):V_i(Ph_3C^+) = 105:$ 1) and the relative initial concentration ratio ([5]:[Et₃SiH] = 1:270).

In the catalytic cleavage of PhOCH₃ with the 1/Et₃SiH system, as noted earlier, cationic iridium silane complex, **3**, is the catalyst resting state, and there is very little iridium dihydride, **5**, and PhMeOSiEt₃⁺, **10**, present in the working catalyst system. Triethylsilane thus competes with low concentrations of **5** as the hydride donor to **10**. The very low equilibrium concentration of PhMeOSiEt₃⁺, **10**, results in slower overall hydride reduction (by **5** and Et₃SiH) rate as compared to the [Ph₃C][B(C₆F₅)₄]/ Et₃SiH system. In the latter system **10** is presumably the catalyst resting state²⁰ (and thus exists in much higher concentration than in the **1**/Et₃SiH system) and results in faster overall reduction by Et₃SiH.

3. Summary

We have shown that cationic iridium pincer catalyst 1 in combination with Et₃SiH reduces a wide variety of unactivated

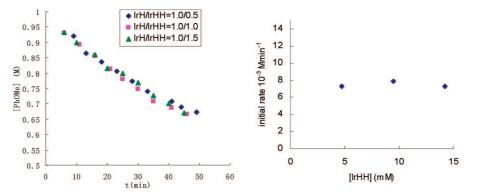
⁽¹⁸⁾ Quantitative analysis of these kinetics is complicated by formation of silyl hydride 6. As the Et₃SiH concentration increases, we note that the neutral silyl hydride species 6 begins to appear in the working catalyst system as noted by the ³¹P signal at 189.2 ppm. This must arise as noted above by reaction of silane with dihydride 5. The silyl hydride apparently will not react with EtO(SiEt₃)₂⁺, 9, so that we assume the appearance of silyl hydride is also accompanied by formation of 9, but we have no good spectroscopic method to detect small quantities of 9 which may be rapidly exchanging with Et₃SiOEt.
(19) (a) Scott, V. J.; Çelenligil-Çetin, R.; Ozerov, O. V. J. Am. Chem.

^{(19) (}a) Scott, V. J.; Çelenligil-Çetin, R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852. (b) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188 reported efficient catalytic reduction of C–F bonds using [Ph₃C][HCB₁₁H₅Cl₆]/Et₃SiH.

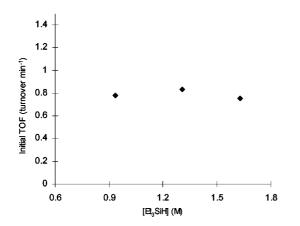
⁽²⁰⁾ PhMeOSiEt₃⁺, **10**, has been independently generated in C₆D₅Cl according to procedures analogous to that for **7**; see Experimental Section for details.

alkyl ethers at room temperature. Poly(ethylene glycol) can also be readily degraded to $Et_3SiOCH_2CH_2OSiEt_3$ and ethane. This iridium catalyst system which uses silane as the cleavage reagent and generates alkanes as the byproduct offers advantages over a reagent such as BBr_3^{21} which is toxic, flammable, and moisture-sensitive and results in the formation of halide byproduct.

Mechanistic studies have revealed a catalytic cycle in which the catalyst resting state(s) depends on the basicity of the alkyl ether. In the reductive cleavage of diethyl ether, prior to product formation there is a rapid pre-equilibrium between silane complex $3 + \text{Et}_2\text{O}$ and dihydride $5 + \text{Et}_3\text{SiOEt}_2^+$ (7) which favors 5 + 7. The turnover-limiting step is the reduction of Et₃SiOEt₂⁺, 7, by the neutral dihydride complex, 5. The proposed intermediate Et₃SiOEt₂⁺, 7, has been generated, isolated, and fully characterized by NMR spectroscopy and X-ray crystallography. Experiments comparing Et₃SiH to 5 as a hydride donor to Et₂OSiEt₃⁺ show relative reactivities of 1:30,000 favoring 5.


In the cleavage of less basic ethers Et₃SiOEt and PhOCH₃, the iridium silane complex, 3, was found to be the catalyst resting state; there is very little dihydride, 5, and oxonium ion present in the working catalyst system. In the case of Et₃SiOEt the hydride reducing reagent for the oxonium intermediate $EtO(SiEt_3)_2^+$ appears to be Et_3SiH . This stems from steric inaccessibility of the hydrides in 5 relative to that of Et₃SiH combined with the sterically shielded -CH2- group of $CH_3CH_2O(SiEt_3)_2^+$. In the case of PhOCH₃ the presence of excess dihydride 5 renders this species the hydride donor rather that Et₃SiH. Here the $-CH_3$ group of $CH_3O(Ph)SiEt_3^+$ is less hindered than the $-CH_2$ - group of $CH_3CH_2O(SiEt_3)_2^+$, and thus steric factors are less significant and the more nucleophilic 5 is the hydride donor. When no excess dihydride 5 is added (implying a very low concentration of 5) qualitative results suggest that triethylsilane can compete with 5 as the hydride donor.

4. Experimental Section

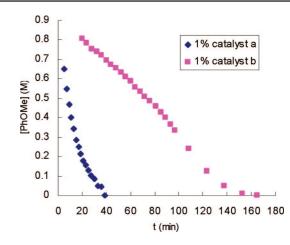

4.1. General Considerations. All manipulations were carried out using standard Schlenk, high-vacuum and glovebox techniques. Argon and nitrogen were purified by passage through columns of BASF R3-11 catalyst (Chemalog) and 4 Å molecular sieves. THF and Et₂O were distilled from sodium benzophenone ketyl prior to use. Methylene chloride and toluene were passed through columns of activated alumina²² and degassed by either freeze-pump-thaw methods or by purging with argon. Benzene and acetone were dried with 4 Å molecular sieves and degassed by freeze-pump-thaw methods. Et₃SiH was dried with $LiAlH_4$ and vacuum transferred into a sealed flask. All of the other substrates, all the arene solvents (C₆D₅Cl, C₆D₄Cl₂, C₆D₆, C₆H₅F), and pentane were dried with CaH₂ and vacuum transferred to a sealed flask. NMR spectra were recorded on Bruker spectrometers (DRX-400, VANCE-400, AMX-300, and DRX-500). ¹H and ¹³C NMR spectra were referenced to residual protio solvent peaks. ³¹P chemical shifts were referenced to an external H₃PO₄ standard. ²⁹Si chemical shifts were referenced to external $(CH_3)_4$ Si. K $[B(C_6F_5)_4]$ was purchased from Boulder Scientific and dried in vacuo at 120 °C for 24 h. All other reagents were purchased from Sigma-Aldrich or Strem. [(POCOP)- $IrH(acetone)]^+[B(C_6F_5)_4]$ (1),¹¹ (POCOP)Ir(H)₂ (5),¹⁴ and Ph₃C[B(C₆F₅)₄]¹⁹ were prepared according to published procedures.

4.2. General Procedure for the Cleavage of Alkyl Ethers Catalyzed by Cationic Iridium Acetone Complex, 1. Triethylsilane (175 μ L, 1.1 mmol, 2.2 equiv) was added to a solution of 1 (6.7 mg, 0.005 mmol, 1 mol %) in C₆D₄Cl₂ (0.3 mL) in a mediumwalled J. Young NMR tube, and the contents were well shaken. The substrate (0.5 mmol, 1.0 equiv) was then added, and the reactions were allowed to stand at room temperature or heated in an oil bath, and the progress was followed by NMR spectroscopy. Conversions were determined by monitoring the loss of alkyl ethers. Reduction products were identified using ¹H and ¹³C{¹H} NMR data in comparison to literature data or authentic samples.

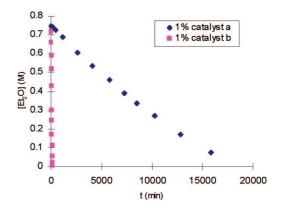
4.3. Cleavage of PhOMe with Et₃SiH Catalyzed by 1 without Solvent. Triethylsilane (352μ L, 2.2 mmol, 2.2 equiv) was added to a medium-walled J. Young NMR tube with 1 (3.3 mg, 0.0025 mmol, 0.25 mol %) and a scaled capillary tube with C₆D₆ as internal standard. To this suspension was then added PhOMe (109 μ L, 1.0 mmol, 1 equiv), and the tube was quickly inverted to

Figure 3. (Left) Plot of PhOMe concentration vs time for the anisole cleavage catalyzed by 1 and 5. (Right) Plot of the initial rate vs concentration of 5 for the cleavage of anisole catalyzed by 1 and 5.

Figure 4. Plot of the initial turnover frequency (TOF) vs Et_3SiH concentration for the cleavage of anisole catalyzed by 1 and 5.


ensure complete mixing. The reactions were allowed to stand at room temperature, and the progress was monitored by NMR spectroscopy. Reduction products (PhOSiEt₃ and CH₄) were identified using ¹H and ¹³C{¹H} NMR data in comparison to literature data.

4.4. Cleavage of Et₂O with Et₃SiH Catalyzed by 1 without Solvent. Triethylsilane (352 µL, 2.2 mmol, 2.2 equiv) was added to a medium-walled J. Young NMR tube with 1 (2 mg, 0.0015 mmol, 0.15 mol %) and a sealed capillary tube with C6D6 as internal standard. To this suspension was then added Et₂O (105 μ L, 1.0 mmol, 1 equiv), and the tube was quickly inverted to ensure complete mixing. Active catalyst species were not very soluble in neat diethyl ether and triethylsilane; therefore, the reaction was carried out at 65 °C in an oil bath. The progress was monitored by NMR spectroscopy. Reduction products (EtOSiEt₃, Et₃SiOSiEt₃, and C_2H_6) were identified using ¹H and ¹³C{¹H} NMR data in comparison to literature data. About 370 TOs were achieved after 44 h., while at 112 h 590 TOs were obtained. Complete conversion of Et₂O to EtOSiEt₃ was achieved at longer reaction times (159 h) at the expense of losing selectivity at 65 °C since some of the EtOSiEt₃ was converted to Et₃SiOSiEt₃.


4.5. Competition Experiments to Determine Relative Reactivities of Et₂O and *i*Pr₂O with 1/Et₃SiH System. Triethylsilane (175 μ L, 1.1 mmol, 4.4 equiv) was added to a solution of 1 (6.7 mg, 0.005 mmol, 2 mol %) in C₆D₄Cl₂ (0.3 mL) in a mediumwalled J. Young NMR tube, and the contents were well shaken. Diethyl ether (0.25 mmol, 26 μ L, 1 equiv) and diisopropyl ether (0.25 mmol, 35 μ L, 1 equiv) were then added, the reactions were allowed to stand at room temperature, and the progress was followed by NMR spectroscopy. Reduction products were identified using ¹H and ¹³C{¹H} NMR in comparison to literature data. After about 2.5 h, Et₂O was quantitatively converted to EtOSiEt₃, while 93% of the *i*Pr₂O remained unreacted. At longer reaction times, reduction of *i*Pr₂O occurs faster than reduction of EtOSiEt₃ with an initial rate ratio of ~3.5:1 as determined by the substrate ether loss.

4.6. Fragmentation of Poly(ethylene glycol) with Et₃SiH catalyzed by 1. Catalyst 1 (3.3 mg, 0.0025 mmol) and poly(ethylene glycol) (22 mg, Sigma-Aldrich, average $M_n = 1300-1600$) were dissolved in C₆D₄Cl₂ (0.3 mL) in a J. Young NMR tube. Triethylsilane (240 μ L, 1.5 mmol) was added to this solution, and the reaction was heated in a 65 °C oil bath for 4 h. The ¹H and ¹³C{¹H} NMR spectra show the disappearance of the poly(ethylene glycol) and formation of Et₃SiOCH₂CH₂OSiEt₃ and ethane. Et₃SiOCH₂CH₂OSiEt₃: ¹H NMR (C₆D₄Cl₂, 400 MHz, 23 °C): δ 3.60 (s, 4H), 0.9 (m, 9H), 0.5 (m, 6H). ¹³C{¹H} NMR (C₆D₄Cl₂, 100.6 MHz, 23 °C): δ 64.3 (s), 6.5 (s), 4.5 (s). At longer reaction times Et₃SiOCH₂CH₂OSiEt₃ was converted to Et₃SiOSiEt₃.

4.7. Determination of the Equilibrium Constants for Silyl Transfer between 3 and 7 during Diethyl Ether Cleavage. The cleavage of Et_2O was performed under standard catalytic

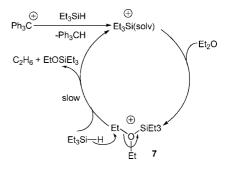


Figure 5. Plot of PhOMe concentration vs time for anisole cleavage reactions catalyzed by catalyst a: $[Ph_3C][B(C_6F_5)_4]$ and by catalyst b: complex **1**.

Figure 6. Plot of Et_2O concentration vs time for Et_2O cleavage reactions catalyzed by catalyst a: $[Ph_3C][B(C_6F_5)_4]$ and by catalyst b: complex 1.

Scheme 8. Proposed Catalytic Cycle for Et_2O Cleavage with $[Ph_3C][B(C_6F_5)_4]/Et_3SiH$

conditions and monitored by ¹H and ³¹P{¹H} NMR spectroscopy. As discussed in the text, a small quantity of **6** was formed by reaction of **5** with triethylsilane (eq 11). Thus, the concentration of **7** was calculated from the sum of the concentrations of **5** and **6**. Once the concentration of **3** was sufficient to be measured relative to that of **5** and Et₂O, the equilibrium constant was determined by ¹H and ³¹P{¹H} NMR spectroscopy following the formula shown in eq 12. At several stages of conversion K_{eq} was determined to be 0.3.

$$3 + Et_2O \xrightarrow{K_{eq} = 0.3} 7 + 5 \xrightarrow{Et_3SiH} H_2 6 (11)$$
$$K_{eq} = \frac{[7][5]}{[3][Et_2O]} = \frac{([5]+[6])[5]}{[3][Et_2O]} (12)$$

4.8. Reaction of Iridium Dihydride Complex, 5, with Et₃SiH. The iridium silyl hydride, **6**, has been previously generated and characterized by treatment of (POCOP)Ir(H)(Cl) with NaOtBu in presence of excess Et₃SiH in C₇D₈.¹¹ In experiments carried out in this work, triethylsilane (175 μ L, 1.1 mmol, 220 equiv) was added to a solution of **5** (3.0 mg, 0.005 mmol, 1 equiv) in C₆D₄Cl₂ (0.4 mL) in a J. Young NMR tube (eq 13, see below). The reaction was allowed to stand at room temperature and the establishment of equilibrium was followed by ¹H and ³¹P{¹H} NMR spectroscopy. ¹H NMR (C₆D₄Cl₂, 400 MHz, 23 °C): **6**, δ –15.9 (t, 1H, IrH); **5**, δ –17.0 (b, 2H, IrH). ³¹P{¹H} NMR (C₆D₄Cl₂, 162 MHz, 23 °C): **6**, δ 189.2; **5**, δ 204.5.

-		F4 011	$\xrightarrow{23 ^{\circ}\text{C}} 6 + H_2 (13)$
5	+ Et ₃ SiH		
		t(min)	6:5 (by ³¹ P NMR)
		22	0.69:1.00
		36	0.75:1.00
		46	0.79:1.00
		56	0.83:1.00
		86	0.81:1.00
		106	0.81:1.00
		126	0.86:1.00
		1016	0.80:1.00
		6788	0.81:1.00

4.9. Cleavage of Et₂O with Et₃SiH Catalyzed by the Mixture of Cationic Complex, 1 and Dihydride Complex, 5. Triethylsilane (175 μ L, 1.1 mmol, 2.2 equiv) and Et₂O (52 μ L, 0.5 mmol, 1 equiv) were added to a solution of 1 (6.7 mg, 0.005 mmol, 1 mol %) and 5 (3.0 mg, 0.005 mmol, 1 mol %) in C₆D₄Cl₂ (0.3 mL) in a medium-walled J. Young NMR tube. The contents were well shaken, and the reaction progress was monitored by decrease of Et₂O resonances relative to the signal of the CH₃CH₂- groups of the silanes [sum of (CH₃CH₂)₃SiH and (CH₃CH₂)₃SiOEt] with respect to time by ¹H NMR spectroscopy. Data is plotted in Figure 1.

4.10. In Situ Generation and Variable-Temperature NMR Spectroscopic Characterization of Diethyl(triethylsilyl)oxonium Ion, 7. Dry C_6D_6 (0.5 mL) was added to a screw-cap NMR tube with $[Ph_3C][B(C_6F_5)_4]$ (92 mg, 0.1 mmol, 1.0 equiv) in a drybox. To this suspension was then added triethylsilane (18 μ L, 0.113 mmol, 1.13 equiv), and the tube was quickly inverted to ensure complete mixing. A light brown oil was produced. The clear top phase was removed by syringe, and the oil was washed with C₆D₆ $(0.1 \text{ mL} \times 2)$. The oil (~0.1 mL) was dissolved in C₆D₅Cl (0.6 mL) at room temperature, and the solution was cooled to -40 °C. Diethyl ether (20–100 μ L, 0.19–0.95 mmol, 1.9–9.5 equiv) was added by syringe, and the NMR tube was then placed in the precooled NMR probe at -40 °C. ¹H NMR (C₆D₅Cl, 400 MHz, -40 °C): δ 3.53 (br, 4H), 0.82 (s, 6H), 0.58 (m, 9H), 0.30 (m, 6H). ¹³C{¹H} NMR (C₆D₅Cl, 100.6 MHz, -40 °C): δ 148.8 (d, ${}^{1}J_{C-F} = 244.5 \text{ Hz}$, 138.7 (d, ${}^{1}J_{C-F} = 246.7 \text{ Hz}$), 136.9 (d, ${}^{1}J_{C-F} =$ 248.6 Hz), 124.5 (br), 75.1 (br), 12.8 (br), 5.5 (s), 3.1 (s). ²⁹Si{¹H} DEPT 45 (C₆D₅Cl, 79 MHz, -40 °C) δ 68.9. The variabletemperature (-40 to 20 °C) ¹H NMR dynamic behavior of 7 is discussed in the text.

4.11. Isolation and X-ray Structure of 7. *Method A:* colorless crystals of **7** can be obtained by slow diffusion of dry pentane into the above-described solution in C_6D_5Cl at -35 °C. *Method B:* **7** can also be isolated by crystallization from the iridium-catalyzed reaction mixture. Triethylsilane (240 μ L, 1.5 mmol, 2.0 equiv) was added to a solution of **1** (20 mg, 0.015 mmol, 2 mol %) in C_6D_5Cl (0.6 mL) in a J. Young NMR tube. Diethyl ether (78.8 μ L, 0.75 mmol, 1.0 equiv) was then added, and the tube was quickly inverted

Table 2. X-ray Crystal Structure Data for Complex 7

, ,	•
empirical formula	$C_{34}H_{25}BF_{20}OSi$
formula weight	868.44
crystal system	orthorhombic
space group	Pbca
unit cell dimensions	$a = 19.5991(9)$ Å, $\alpha = 90^{\circ}$
	$b = 17.4575(9)$ Å, $\beta = 90^{\circ}$
	$c = 21.7621(12)$ Å, $\gamma = 90^{\circ}$
volume	7445.9(7) Å ³
Ζ	8
absorption coefficient	0.192 mm^{-1}
density (calculated)	1.549 mg/m^3
crystal size	$0.30 \times 0.30 \times 0.10 \text{ mm}^3$
data/restraints/parameters	7075/38/578
final R indices $[I > 2\sigma(I)]$	R1 = 0.0522, wR2 = 0.1414

to ensure complete mixing. Oxonium ion 7 crystallized from this reaction mixture at -35 °C. *Method C:* Oxonium ion 7 can also be obtained in crystalline form from the [Ph₃C][B(C₆F₅)₄]-catalyzed reaction mixture as well. Triethylsilane (110 μ L, 0.69 mmol, 0.97 equiv) and diethyl ether (75 μ L, 0.71 mmol, 1.0 equiv) were added to a solution of [Ph₃C][B(C₆F₅)₄] (16 mg, 0.0174 mmol, 2.5 mol %) in C₆D₅Cl (0.6 mL) in a J. Young NMR tube. The tube was quickly inverted to ensure complete mixing. The solution was layered with pentane (1–2 mL) and left at room temperature overnight and then at -35 °C for a few days to give 7.

Crystallographic data for **7** were collected on a Bruker SMART APEX-2 using Cu K α radiation. Final agreement indices were R1 (all) = 6.87% and R2 (all) = 14.98%. All atoms were refined anisotropically. Selected crystallographic data appear in Table 2.

4.12. Reaction of 7 with 5 at Low Temperature. A stock solution of **5** (0.25 M) was prepared in C_6D_5Cl in a glovebox at room temperature. Upon generating **7** in C_6D_5Cl (0.1 mmol, 1.0 equiv) in a screw-cap NMR tube, an aliquot of the stock solution of **5**(400 μ L, 0.1 mmol, 1.0 equiv) was added by syringe at -40 °C. The NMR tube was then placed in the precooled NMR probe at -40 °C. The progress was monitored by ¹H, ³¹P{¹H}, and ¹³C{¹H} NMR spectroscopy. Observations are summarized in the text.

4.13. Typical Procedures for Cleavage of PhOMe Catalyzed by the Mixture of Cationic Complex, 1, and Dihydride Complex, 5. A stock solution (A) of 1 (33.3 mM) and a stock solution of 5 (50 mM) (B) were respectively prepared in C₆D₄Cl₂ in a glovebox. An aliquot (50–150 μ L, 0.5–1.5 mol % 5) of stock solution B was added by syringe to an aliquot (150 μ L, 1 mol % 1) of stock solution A in a J. Young NMR tube. C₆D₄Cl₂ (100–0 μ L) was added to keep the total amount of C₆D₄Cl₂ at 300 μ L. Triethylsilane (175 μ L, 1.1 mmol, 2.2 equiv) and anisole (54 μ L, 0.5 mmol, 1 equiv) were then added to the solution, and the contents were well shaken. The reaction was monitored by anisole loss relative to the CH₃CH₂– groups of the silanes [sum of (CH₃CH₂)₃SiH and (CH₃CH₂)₃SiOPh] with respect to time by ¹H NMR spectroscopy. The data were analyzed using the method of initial rates.

4.14. Kinetic Studies of Cleavage of PhOMe with Various Amounts of Et₃SiH Catalyzed by 1 and 5. A stock solution of the mixture of 1 (12.5 mM) and 5 (12.5 mM) was prepared in C₆D₄Cl₂ in a glovebox. Triethylsilane (80–160 μ L, 0.5–1.0 mmol, 1–2 equiv) and anisole (54 μ L, 0.5 mmol, 1 equiv) were added by syringe to an aliquot (400 μ L) of this stock solution in a J. Young NMR tube, and the contents were well shaken. The reaction was monitored by anisole loss relative to the CH₃CH₂– groups of the

^{(21) (}a) Ishihara, K. In *Lewis Acids in Organic Synthesis*; Yamamoto, H., Ed.; Wiley-VCH: Weinheim, 2000; Vol. 1, p 91. (b) Kocienski, P. J. *Protecting Groups*; Thieme: Stuttgart, New York, 1994; p 42.

 ^{(22) (}a) Alaimo, P. J.; Peters, D. W.; Arnold, J.; Bergman, R. G. J. Chem. Educ. 2001, 78, 64. (b) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

silanes [sum of $(CH_3CH_2)_3$ SiH and $(CH_3CH_2)_3$ SiOPh] with respect to time by ¹H NMR spectroscopy.. The data were analyzed using the method of initial rates.

4.15. Cleavage of PhOMe with Et₃SiH Catalyzed by [Ph₃C]-[B(C₆F₅)₄]. Anisole (54 μ L, 0.5 mmol, 1 equiv) was added to a solution of [Ph₃C][B(C₆F₅)₄] (4.6 mg, 0.005 mmol, 1 mol %) in C₆D₄Cl₂ (0.3 mL) in a medium-walled J. Young NMR tube. Triethylsilane (175 μ L, 1.1 mmol, 2.2 equiv) was then added, and the reaction was allowed to stand at room temperature and was monitored by anisole loss relative to the CH₃CH₂- groups of silanes [sum of (CH₃CH₂)₃SiH and (CH₃CH₂)₃SiOPh] with respect to time by ¹H NMR spectroscopy.

4.16. Cleavage of Et₂O with Et₃SiH Catalyzed by [Ph₃C]-[B(C₆F₅)₄]. Triethylsilane (175 μ L, 1.10 mmol, 2.2 equiv) was added to a solution of [Ph₃C][B(C₆F₅)₄] (4.6 mg, 0.005 mmol, 1 mol %) in C₆D₄Cl₂ (0.3 mL) in a medium-walled J. Young NMR tube. Diethyl ether (52 μ L, 0.5 mmol, 1 equiv) was then added, and the reaction was allowed to stand at room temperature and was monitored by Et₂O loss relative to the CH₃CH₂- groups of the silanes [sum of (CH₃CH₂)₃SiH and (CH₃CH₂)₃SiOEt] with respect to time by ¹H NMR spectroscopy.

4.17. In Situ Generation and NMR Spectroscopic Characterization of Methylphenyl(triethylsilyl)oxonium Ion, 10. Dry C_6D_6 (0.4 mL) was added to a screw-cap NMR tube with [Ph₃C][B(C_6F_5)₄] (46 mg, 0.05 mmol, 1.0 equiv) in a drybox. To this suspension was then added triethylsilane (9 μ L, 0.056 mmol, 1.13 equiv), and the tube was quickly inverted to ensure complete mixing. Light-brown oil was produced. The clear top phase was removed by syringe, and the oil was washed with C_6D_6 (0.1 mL ×

2). The oil was dissolved in C_6D_5Cl (0.6 mL), and the solution was cooled down to -40 °C. Anisole (20 μ L, 0.19 mmol, 3.7 equiv) was added by syringe, and the NMR tube was then placed in the precooled NMR probe at -40 °C. Oxonium ion 10 and free anisole coalesce under these conditions due to rapid exchange on the NMR time scale. The ¹H spectrum shows the triethylsilyl group resonances at δ 0.54 (CH₃) and 0.32 (CH₂), and broad bands at δ 3.42 for the methyl protons of the -OCH₃ group. The ¹³C{¹H} shows, in addition to the B(C₆F₅)₄⁻ counteranion [δ 148.8 (d), 138.8 (d), 136.9 (d), 124.5 (br)] and free PhOMe [line broadenings observed, δ 159.7 (br), 130 (br, overlapped with C_6D_5Cl), 121.0 (br), 114.1 (br)], two major signals corresponding to the triethylsilyl group at δ 3.6 and 5.4. ¹H NMR (C₆D₅Cl, 500.13 MHz, -40 °C): δ 7.16 (br), 6.96 (br), 6.75 (br), 3.42 (br), 0.54 (m), 0.32 (m). ²⁹Si{¹H} DEPT 45 (C₆D₅Cl, 99.35 MHz, -40 °C) δ 77.2. The ²⁹Si shift of δ 77.2 clearly indicates formation of Et₃SiOMePh⁺ (10) as exchange of PhOMe with silicon-bound PhOMe will not affect the ²⁹Si resonance.

Acknowledgment. We gratefully acknowledge funding by the STC program of the National Science Foundation under agreement No. CHE-9876674.

Supporting Information Available: CIF file containing X-ray crystallographic data for **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

JA806419H